Horizontal and Vertical Polarization: Task-Specific Technological Change in a Multi-Sector Economy

Sang Yoon (Tim) Lee¹ Yongseok Shin²

¹Queen Mary University of London and CEPR ²Washington U. St. Louis, FRB St. Louis and NBER

September 2019

Empirical Observations

Known facts:

- Middle-skill employment has shrunk since the 1980s (polarization); similar pattern for relative wage
- 2. Employment shifting from manufacturing to services (structural change)

We document that:

- 1. Rise in employment share and relative wage of managers (*vertical* polarization)
- 2. Both sectors have polarized, but more in manufacturing
- 3. Manufacturing's relative TFP took off since the 1980s

What We Do

- Present a tractable model with
 - Managers and workers (span-of-control)
 - Workers working in different tasks
 - Manufacturing and services sectors
- Routinization (TSTC among middle-skill tasks) can qualitatively and quantitatively account for: diff. H. and V. polarization b/w sectors ⇒ structural change
- 3. Calibrated TSTC correlates strongly with routine-manual and manual-interpersonal indices in O*NET

Employment Polarization

1980-2010, extends Autor and Dorn (2013)

Structural Change: Employment

BEA NIPA Accounts (similar in Census)

► GDP (Nominal)

Sectoral TFP's: Since 1947

BEA NIPA Accounts

▶ Counterfactuals

Employment Polarization by Sector

▶ by COC

Vertical Polarization

- Employment share of management and their compensation have been rising relative to wage-workers'
- Less well-known that this has been faster in manufacturing
- We explain this by routinization replacing wage-workers, who at the margin instead become managers

Managers vs Workers, Aggregate

Manager Employment by Sector

► SC by Mgr/Wkr ► Wages

Task-Based Macro Model

Model Elements: Individuals

- 1. Unit mass of individuals differ in terms of 2 skills
 - $s=(z,h)\in\mathcal{S}\subset\mathbb{R}^2_+$ with distribution μ
 - z: managerial talent
 - h: worker skill
 - neither sector- nor task-specific
- 2. Occupation choice: Individuals can work as a span-of-control manager, or as a worker in 1 of 3 tasks:
 - Managers organize tasks, using z
 - Tasks $j \in \{0, 1, 2\}$ (e.g., manual, routine, abstract) use h

▶ firm-individual census

c.f. All results go through with continuum of tasks j (in paper)

Task-Specific Technologies

• Production unit: a manager in sector i combines tasks τ_{ij} :

$$y_{i}(z) = \left[\eta_{i}^{\frac{1}{\omega}} x_{iz}^{\frac{\omega-1}{\omega}} + (1 - \eta_{i})^{\frac{1}{\omega}} x_{ih}^{\frac{\omega-1}{\omega}}\right]^{\frac{\omega}{\omega-1}}$$
$$x_{iz} = M_{z} k_{iz}^{\alpha} z_{i}^{1-\alpha}, \quad x_{ih} = \left(\sum_{j=0}^{2} \nu_{ij}^{\frac{1}{\sigma}} \tau_{ij}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

Simple form of log-supermodularity in skills and tasks:

$$\begin{split} \tau_{i0} &= M_0 k_{i0}^{\alpha} \left[\bar{h} \mu_i(\mathbf{h}_0) \right]^{1-\alpha} \\ \tau_{i1} &= M_1 k_{i1}^{\alpha} \left[\int_{\mathbf{h}_1} h d\mu_i \right]^{1-\alpha} \\ \tau_{i2} &= M_2 k_{i2}^{\alpha} \left[\int_{\mathbf{h}_2} (h - \chi) d\mu_i \right]^{1-\alpha} \end{split}$$

where M_j : task-specific TFP, h_j : set of workers hired c.f. Discrete analog of general log-supermodular function b(h,j) (in paper)

One Sector Equilibrium

Comparative Advantage and Positive Sorting: Equal to optimal assignment

Routinization and Job Polarization

Within-Sector: Relative Increase in M_1

Assume $\omega < \sigma < 1$:

Task-Specific Technologies: Sectors

• Production unit: a manager in sector i combines tasks τ_{ij} :

$$y_{i}(z) = \left[\eta_{i}^{\frac{1}{\omega}} x_{iz}^{\frac{\omega-1}{\omega}} + (1 - \eta_{i})^{\frac{1}{\omega}} x_{ih}^{\frac{\omega-1}{\omega}} \right]^{\frac{\omega}{\omega-1}}$$
$$x_{iz} = M_{z} k_{iz}^{\alpha} z_{i}^{1-\alpha}, \quad x_{ih} = \left(\sum_{j=0}^{2} \nu_{ij}^{\frac{1}{\sigma}} \tau_{ij}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

▶ Manu Shares

• Two types of sectoral output $i \in \{m, s\}$ (i.e., manufacturing and services) form final good:

$$Y = \left[\gamma_m^{\frac{1}{\epsilon}} Y_m^{\frac{\epsilon - 1}{\epsilon}} + \gamma_s^{\frac{1}{\epsilon}} Y_s^{\frac{\epsilon - 1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon - 1}}.$$

where $\gamma_m + \gamma_s = 1$ and $\epsilon < 1$.

Two Sector Equilibrium

Two Sector Solution

Sectoral productions can be written as

$$Y_i = \Phi_i K_i^{\alpha} L_i^{1-\alpha}$$

where Φ_i is endogenous TFP determined by (\hat{h}_j,\hat{z})

- So $L_s/L_m = (\gamma_s/\gamma_m) \cdot (\Phi_s/\Phi_m)^{\epsilon-1}$ also function of (\hat{h}_j,\hat{z})
- Aggregate employment share of task j:

$$L_j = \sum_{i \in \{m, s\}} (L_{ij}/L_i) \cdot L_i$$

- L_j: aggregate labor supply
- L_{ij}/L_i : within-sector labor demand
- L_i: between-sector labor demand
- ullet Equilibrium unique under well-behaved μ and small χ

Routinization and Polarization, Two Sectors

Two Sectors: Relative Increase in M_1

Manufacturing more (less) reliant on routine task (managers)

Routinization and Polarization, Two Sectors

Two Sectors: Relative Increase in M_1

H. and V. Polarization faster in manufacturing, ignoring sectoral reallocation (structural change)

Routinization and Structural Change

Two Sectors: Relative Increase in M_1

TFP growth higher in manufacturing SC toward services if $\epsilon < 1$

Quantitative Analysis

- Divide 1980 COC's into 1+1+7+2 occupations: broadly, management (11%), manual (10%), routine (59%), abstract (20%)
- Bivariate Pareto type IV distribution (γ_h, γ_z, a) fit to 1980 data on observed wage shares:

$$1 - \mu(z, h) = \left[1 + z^{1/\gamma_z} + h^{1/\gamma_h}\right]^{-a}$$

- Constant growth rates m_i for all 11 task productivities
- Feed k_t into model for each decade 1980-2010, target trends to calibrate parameters
- * Robustness: allow exogenous productivity growth (a_m,a_s) in manufacturing

Calibration Targets

Ranked by mean wage (except management)	SOC Code	1980	mployme 2010	ent Shares Manufacturing	
Low Skill Services	400	10.44	13.92	0.59	0.23
Middle Skill		59.09	46.48	25.86	12.93
Administrative Support	300	16.57	14.13	3.47	1.53
Machine Operators	700	9.81	3.75	8.79	3.02
Transportation	800	8.73	6.64	3.80	2.28
Sales	240	7.87	9.37	0.79	0.62
Technicians	200	3.23	3.86	1.00	0.57
Mechanics & Construction	500	7.91	6.02	4.44	3.19
Miners & Precision Workers	600	4.97	2.71	3.58	1.73
High Skill		19.22	26.16	3.87	3.64
Professionals	40	11.02	16.51	1.73	1.45
Management Support	20	8.20	9.65	2.14	2.20
Management	1	11.26	13.44	2.47	2.59

Calibrated Parameters

Estimated		
$\gamma \epsilon$	0.371 0.003 0.361	Herrendorf, Rogerson and Valentinyi (2013) BEA NIPA accounts
α	0.301	DEA NIFA accounts
Fit to 1980		(solved in closed form)
$M_{j} \equiv M$ A_{m} η_{i} (2), ν_{ij} (18) a, γ_{h}, χ_{j} (8)	0.985 1.112	Output per worker, normalization Manufacturing employment share Employment shares by task/sector Wage shares by task/sector
Fit to 2010		(method of moments)
$\sigma \ \omega \ m_j$ (11)	0.704 0.341	Output per worker growth, employment shares by task only within-sector
Fixed		
$ar{h} \gamma_z$	1 1	Not separately identified from ${\cal M}_0$ Monotonic firm-size distribution

Model Fit: Employment Shares

Structural Change

Service Employment Share

Log Measured TFP

Polarization

Summary

- 1. Task-specific TC growth can explain
 - almost all of employment shifts at the task-level
 - observed changes in sectoral TFP's
 - almost all of structural change
- 2. Results robust to including sector-specific TC, which does not cause any within-sector polarization

More Implications

 More managers in manufacturing, employment decline but output increase by establishment

Emp/estab
VA/estab

- But total managers have increased, while average establishment sizes have not shrunk
 - ⇒ Rise of mid-level managers, which in our model comes from individuals with lower z's
 ▶ within mgr shares
 - ⇒ Larger rise in inequality among managers, also in the data

Policy Implication A Hypothetical Intervention

"Dislocation" blamed on trade

- Polarization within services
- Subsidizing manufacturing when ϵ is nearly 0

Policy Implication A Hypothetical Intervention

A riypothetical intervention

"Dislocation" blamed on trade

- Polarization within services
- Subsidizing manufacturing when ϵ is nearly 0
- Manufacturing polarized faster:
 1 p.p. increase in manufacturing employment share ⇒
 0.25 p.p. increase in middle-skill/routine job share

What is driving TSTC?

Correlate/regress college shares and empirical measures of COC task content with our calibrated task productivities

- Disaggregated O*NET measures: routine-manual and manual-interpersonal explain more than 3/4
- 2. Managers are distinct: highest in all cognitive/interpersonal measures and lowest in routine/physical measures
- 3. Aggregate RTI indices lose explanatory power
- 4. College measures explain little (Acemoglu and Autor, 2011; Autor and Dorn, 2013)
 - Offshoring indices explain little (Goos, Manning and Salomons, 2014)

Polarization and TSTC

O*NET and TSTC

RTI and TSTC

College and TSTC

Conclusion

- A tractable task-based macro model of horizontal/vertical polarization, structural change and growth
- Polarization leads to structural change, which further reinforces polarization
- TSTC accounts for almost all of polarization and structural change
- TSTC strongly correlates with routine-manual and (negatively with) interpersonal jobs

Long-Run Agenda

- Trade and off-shoring among heterogeneous countries
- Endogenous skill distribution dynamics over time
- Differentiated managerial occupations; firm-side inequality (between-firm and within-firm inequality)
- Heterogeneous capital-skill complementarity across jobs

Establishment Size and Span of Control

x-axis: Census, *y*-axis: SUSB,170 industries.

Establishment Output and Manager Compensation

x-axis: Census, y-axis: BEA, 48 industries.

Employment Polarization

1980-2010, replicated following Autor and Dorn (2013)

Routinization Hypothesis

Extends Autor and Dorn (2013)

Wage Polarization

1980-2010, replicated following Autor and Dorn (2013)

Structural Change: GDP (Nominal)

BEA NIPA Accounts

▶ Employment

Change in Manufacturing Employment

Change in Manufacturing Employment

Manufacturing Employment Shares

$$\eta_m < \eta_s, \quad \nu_{m1} > \nu_{s1}$$

Manager COC and Self-employment

→ back1 → back2

Sectoral Employment Shares by Occupation

▶ back

Manager Wages by Sector

Sectoral Wage Ratios by Occupation

Bivariate Pareto Skill Distribution

Model Fit: Total Wage Shares

Services

Employment by Establishment

▶ back

VA Output by Establishment

Wage Inequality

- Acemoglu, Daron and David Autor, "Skills, Tasks and Technologies: Implications for Employment and Earnings," in David Card and Orley Ashenfelter, eds., *Handbook of Labor Economics*, Vol. 4, Part B, Elsevier, 2011, pp. 1043 1171.
- **Autor, David H. and David Dorn**, "The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market," *American Economic Review*, 2013, *103* (5), 1553–97.
- **Gabaix, Xavier and Augustin Landier**, "Why Has CEO Pay Increased So Much?," *Quarterly Journal of Economics*, 2008, pp. 49–100.
- Goos, Maarten, Alan Manning, and Anna Salomons, "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," *American Economic Review*, 2014, 104 (8), 2509–26.

Herrendorf, Berthold, Richard Rogerson, and Ákos

Valentinyi, "Two Perspectives on Preferences and Structural Transformation," *American Economic Review*, 2013, *103* (7), 2752–89.